Read a fixed width file into a tibble
Usage
vroom_fwf(
file,
col_positions = fwf_empty(file, skip, n = guess_max),
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),
na = c("", "NA"),
comment = "",
skip_empty_rows = TRUE,
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = 100,
altrep = TRUE,
altrep_opts = deprecated(),
num_threads = vroom_threads(),
progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique"
)
fwf_empty(file, skip = 0, col_names = NULL, comment = "", n = 100L)
fwf_widths(widths, col_names = NULL)
fwf_positions(start, end = NULL, col_names = NULL)
fwf_cols(...)
Arguments
- file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).
Files ending in
.gz
,.bz2
,.xz
, or.zip
will be automatically uncompressed. Files starting withhttp://
,https://
,ftp://
, orftps://
will be automatically downloaded. Remote gz files can also be automatically downloaded and decompressed.Literal data is most useful for examples and tests. To be recognised as literal data, the input must be either wrapped with
I()
, be a string containing at least one new line, or be a vector containing at least one string with a new line.Using a value of
clipboard()
will read from the system clipboard.- col_positions
Column positions, as created by
fwf_empty()
,fwf_widths()
orfwf_positions()
. To read in only selected fields, usefwf_positions()
. If the width of the last column is variable (a ragged fwf file), supply the last end position as NA.- col_types
One of
NULL
, acols()
specification, or a string. Seevignette("readr")
for more details.If
NULL
, all column types will be inferred fromguess_max
rows of the input, interspersed throughout the file. This is convenient (and fast), but not robust. If the guessed types are wrong, you'll need to increaseguess_max
or supply the correct types yourself.Column specifications created by
list()
orcols()
must contain one column specification for each column. If you only want to read a subset of the columns, usecols_only()
.Alternatively, you can use a compact string representation where each character represents one column:
c = character
i = integer
n = number
d = double
l = logical
f = factor
D = date
T = date time
t = time
? = guess
_ or - = skip
By default, reading a file without a column specification will print a message showing what
readr
guessed they were. To remove this message, setshow_col_types = FALSE
or set `options(readr.show_col_types = FALSE).- col_select
Columns to include in the results. You can use the same mini-language as
dplyr::select()
to refer to the columns by name. Usec()
to use more than one selection expression. Although this usage is less common,col_select
also accepts a numeric column index. See?tidyselect::language
for full details on the selection language.- id
The name of a column in which to store the file path. This is useful when reading multiple input files and there is data in the file paths, such as the data collection date. If
NULL
(the default) no extra column is created.- locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.- na
Character vector of strings to interpret as missing values. Set this option to
character()
to indicate no missing values.- comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
- skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is
TRUE
then blank rows will not be represented at all. If it isFALSE
then they will be represented byNA
values in all the columns.- trim_ws
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?
- skip
Number of lines to skip before reading data.
- n_max
Maximum number of lines to read.
- guess_max
Maximum number of lines to use for guessing column types. Will never use more than the number of lines read. See
vignette("column-types", package = "readr")
for more details.- altrep
Control which column types use Altrep representations, either a character vector of types,
TRUE
orFALSE
. Seevroom_altrep()
for for full details.- altrep_opts
- num_threads
The number of processing threads to use for initial parsing and lazy reading of data. If your data contains newlines within fields the parser should automatically detect this and fall back to using one thread only. However if you know your file has newlines within quoted fields it is safest to set
num_threads = 1
explicitly.- progress
Display a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar can be disabled by setting option
readr.show_progress
toFALSE
.- show_col_types
If
FALSE
, do not show the guessed column types. IfTRUE
always show the column types, even if they are supplied. IfNULL
(the default) only show the column types if they are not explicitly supplied by thecol_types
argument.- .name_repair
Handling of column names. The default behaviour is to ensure column names are
"unique"
. Various repair strategies are supported:"minimal"
: No name repair or checks, beyond basic existence of names."unique"
(default value): Make sure names are unique and not empty."check_unique"
: no name repair, but check they areunique
."universal"
: Make the namesunique
and syntactic.A function: apply custom name repair (e.g.,
name_repair = make.names
for names in the style of base R).A purrr-style anonymous function, see
rlang::as_function()
.
This argument is passed on as
repair
tovctrs::vec_as_names()
. See there for more details on these terms and the strategies used to enforce them.- col_names
Either NULL, or a character vector column names.
- n
Number of lines the tokenizer will read to determine file structure. By default it is set to 100.
- widths
Width of each field. Use NA as width of last field when reading a ragged fwf file.
- start, end
Starting and ending (inclusive) positions of each field. Use NA as last end field when reading a ragged fwf file.
- ...
If the first element is a data frame, then it must have all numeric columns and either one or two rows. The column names are the variable names. The column values are the variable widths if a length one vector, and if length two, variable start and end positions. The elements of
...
are used to construct a data frame with or or two rows as above.
Details
Note: fwf_empty()
cannot take a R connection such as a URL as input, as
this would result in reading from the connection twice. In these cases it is
better to download the file first before reading.
Examples
fwf_sample <- vroom_example("fwf-sample.txt")
writeLines(vroom_lines(fwf_sample))
#> John Smith WA 418-Y11-4111
#> Mary Hartford CA 319-Z19-4341
#> Evan Nolan IL 219-532-c301
# You can specify column positions in several ways:
# 1. Guess based on position of empty columns
vroom_fwf(fwf_sample, fwf_empty(fwf_sample, col_names = c("first", "last", "state", "ssn")))
#> Rows: 3 Columns: 4
#> ── Column specification ──────────────────────────────────────────────────
#>
#> chr (4): first, last, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 4
#> first last state ssn
#> <chr> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301
# 2. A vector of field widths
vroom_fwf(fwf_sample, fwf_widths(c(20, 10, 12), c("name", "state", "ssn")))
#> Rows: 3 Columns: 3
#> ── Column specification ──────────────────────────────────────────────────
#>
#> chr (3): name, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 3
#> name state ssn
#> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301
# 3. Paired vectors of start and end positions
vroom_fwf(fwf_sample, fwf_positions(c(1, 30), c(20, 42), c("name", "ssn")))
#> Rows: 3 Columns: 2
#> ── Column specification ──────────────────────────────────────────────────
#>
#> chr (2): name, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 2
#> name ssn
#> <chr> <chr>
#> 1 John Smith 418-Y11-4111
#> 2 Mary Hartford 319-Z19-4341
#> 3 Evan Nolan 219-532-c301
# 4. Named arguments with start and end positions
vroom_fwf(fwf_sample, fwf_cols(name = c(1, 20), ssn = c(30, 42)))
#> Rows: 3 Columns: 2
#> ── Column specification ──────────────────────────────────────────────────
#>
#> chr (2): name, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 2
#> name ssn
#> <chr> <chr>
#> 1 John Smith 418-Y11-4111
#> 2 Mary Hartford 319-Z19-4341
#> 3 Evan Nolan 219-532-c301
# 5. Named arguments with column widths
vroom_fwf(fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))
#> Rows: 3 Columns: 3
#> ── Column specification ──────────────────────────────────────────────────
#>
#> chr (3): name, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 3
#> name state ssn
#> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301